
✅ Queues

📌 Problem Statement:

A truck wants to complete a circular tour of petrol pumps.

Each petrol pump has petrol liters and is at a certain distance from the next pump.

The truck consumes 1 liter of petrol per unit distance.

Find the starting petrol pump index from which the truck can complete the full circle without
running out of petrol.

📥 Example:

Input:

petrolpumps = [(4, 6), (6, 5), (7, 3), (4, 5)]

Output:

1

Explanation:

Starting at pump 1 allows completing the circle.

🔁 Brute Force:

Try starting from each pump.

Check if truck completes circle.

O(n^2) time, inefficient.

🚀 Optimal Approach:

Use a greedy approach with two pointers.

Keep track of current petrol and deficit.

If current petrol becomes negative, move start to next pump and add deficit.

At the end, if total petrol >= total distance, starting point found.

✅ Java Code:

public class TruckTour {

 public static int truckTour(int[][] pumps) {

 int n = pumps.length;

 int start = 0;

 int petrol = 0;

 int deficit = 0;

 for (int i = 0; i < n; i++) {

 petrol += pumps[i][0] - pumps[i][1]; // petrol gained - distance

 if (petrol < 0) {

 deficit += petrol;

 petrol = 0;

 start = i + 1;

 }

 }

 return (petrol + deficit) >= 0 ? start : -1;

 }

 public static void main(String[] args) {

 int[][] pumps = {{4,6}, {6,5}, {7,3}, {4,5}};

 System.out.println(truckTour(pumps)); // Output: 1

 }

}

✅ Output:

1

✅ Queues / Sorting – Jim and the Orders

📌 Problem Statement:

Jim runs a restaurant. Customers place orders at different times, and each order takes some time to
prepare.

You need to output the order in which Jim will serve the customers.

Customers are served by the order of their completion time (order time + preparation time).

If two orders complete at the same time, serve the customer with the smaller customer ID first.

📥 Example:

Input:

orders = [[1, 3], [2, 3], [3, 3]]

Output:

1 2 3

Explanation:

Completion times: 4, 5, 6 → served in order 1, 2, 3

🔁 Brute Force:

Calculate completion times.

Sort by completion time and customer ID.

O(n log n) time.

🚀 Optimal Approach:

Same as brute force because sorting is efficient for this problem.

✅ Java Code:

import java.util.*;

public class JimAndTheOrders {

 public static int[] jimOrders(int[][] orders) {

 int n = orders.length;

 int[][] completion = new int[n][2]; // [completion_time, customer_id]

 for (int i = 0; i < n; i++) {

 completion[i][0] = orders[i][0] + orders[i][1];

 completion[i][1] = i + 1; // customer IDs are 1-based

 }

 Arrays.sort(completion, (a, b) -> {

 if (a[0] != b[0]) return a[0] - b[0];

 else return a[1] - b[1];

 });

 int[] result = new int[n];

 for (int i = 0; i < n; i++) {

 result[i] = completion[i][1];

 }

 return result;

 }

 public static void main(String[] args) {

 int[][] orders = {{1, 3}, {2, 3}, {3, 3}};

 int[] result = jimOrders(orders);

 for (int id : result) {

 System.out.print(id + " ");

 }

 // Output: 1 2 3

 }

}

✅ Output:

1 2 3

