
✅ Greedy Algorithms

✅ Greedy Algorithms – Greedy Florist

📌 Problem Statement:

You and your k friends want to buy n flowers. Each flower has a price. But the florist has a rule:

If someone has already bought x flowers, the next flower they buy will cost price * (x + 1) .

Your goal is to minimize the total cost of buying all flowers.

📥 Example:

java

CopyEdit

Input:n = 3, k = 3c = [2, 5, 6]Output: 13Explanation:Each person buys one flower.Cost = 6 +

5 + 2 = 13

🔁 Brute Force (Inefficient):

Try all ways to assign flowers to people.

Time Complexity: Factorial — not feasible.

🧠 Greedy Intuition:

Buy expensive flowers first.

Distribute purchases in round-robin fashion, keeping track of how many each person has bought.

🚀 Optimal Greedy Solution

Time Complexity: O(n log n)

Space Complexity: O(1)

import java.util.*;

public class GreedyFlorist {

 public static int getMinimumCost(int k, int[] c) {

 Arrays.sort(c); // Sort prices in ascending

 int n = c.length;

 int cost = 0;

 int flowerBought = 0;

 for (int i = n - 1; i >= 0; i--) {

 int round = flowerBought / k;

 cost += c[i] * (round + 1);

 flowerBought++;

 }

 return cost;

 }

}

Input:
k = 2, c = [2, 5, 6]

Output: 15
Explanation:
First person buys 6 (cost: 6×1), then second person buys 5 (5×1), then first person buys 2 (2×2). Total =
6 + 5 + 4 = 15

✅ Greedy Algorithms – Marc's Cakewalk

📌 Problem Statement:

Marc loves cupcakes, but to stay healthy, he follows a rule:

If he eats the i-th cupcake in order of decreasing calorie count, the calorie gain is:
calories[i] * (2^i)

You must help him minimize total calorie gain.

📥 Example:

Input:

calories = [5, 10, 7]

Output: 79

Explanation:

Eat in order: 10, 7, 5

Calories: 10×2⁰ + 7×2¹ + 5×2² = 10 + 14 + 40 = 64

🔁 Brute Force:

Try all permutations to find the best order.

Time Complexity: O(n!)

🧠 Greedy Intuition:

Always eat the highest calorie cupcake first → minimum multiplier.

🚀 Optimal Greedy Solution

Time Complexity: O(n log n)

Space Complexity: O(1)

import java.util.*;

public class MarcsCakewalk {

 public static long marcsCakewalk(int[] calories) {

 Arrays.sort(calories); // Sort in ascending

 long totalCalories = 0;

 int n = calories.length;

 for (int i = 0; i < n; i++) {

 totalCalories += (long) calories[n - 1 - i] * (1L << i); // 2^i

 }

 return totalCalories;

 }

}

✅ Output

Input: [1, 3, 2]

Output: 11

Explanation: Eat 3×1 + 2×2 + 1×4 = 3 + 4 + 4 = 11

✅ Greedy Algorithms – Luck Balance

📌 Problem Statement:

Lena loves to compete in contests. Each contest has:

A luck value L

An importance flag T (1 = important, 0 = unimportant)

She can lose any unimportant contest.

She can lose at most k important contests.
Losing a contest adds its luck to her score.
Winning a contest subtracts its luck from her score.

📥 Example:

Input:

k = 2

contests = [[5, 1], [1, 1], [4, 0]]

Output: 10

Explanation:

- Lose 5 and 4 (luck += 9)

- Win 1 (luck -= 1)

Total: 5 + 4 - 1 = 8

🔁 Brute Force:

Try all combinations of contests to win/lose.

Time Complexity: Exponential

🧠 Greedy Intuition:

Always lose unimportant contests.

For important ones:

Sort by highest luck.

Lose top k , win the rest.

🚀 Optimal Greedy Solution

Time Complexity: O(n log n)

Space Complexity: O(n)

import java.util.*;

public class LuckBalance {

 public static int luckBalance(int k, int[][] contests) {

 List<Integer> important = new ArrayList<>();

 int totalLuck = 0;

 for (int[] contest : contests) {

 int luck = contest[0];

 int type = contest[1];

 if (type == 0) {

Goal: Maximize total luck balance.

 totalLuck += luck; // Always lose unimportant contests

 } else {

 important.add(luck); // Store important ones

 }

 }

 // Sort important contests descending

 Collections.sort(important, Collections.reverseOrder());

 // Lose top k important

 for (int i = 0; i < important.size(); i++) {

 if (i < k)

 totalLuck += important.get(i); // Lose

 else

 totalLuck -= important.get(i); // Win

 }

 return totalLuck;

 }

}

✅ Output

Input:

k = 2, contests = [[5, 1], [2, 1], [1, 1], [8, 0]]

Output: 18

Explanation:

Lose 5 and 2 → +7

Win 1 → -1

Lose 8 (unimportant) → +8

Total: 14

✅ Greedy Algorithms – Priyanka and Toys

📌 Problem Statement:

Priyanka wants to buy toys.
Each toy has a weight.
She can buy all toys within a range of w to w + 4 in a single container.
She wants to minimize the number of containers used.

📥 Example:

Input:

weights = [1, 2, 3, 17, 10]

Output: 3

Explanation:

- Container 1: [1, 2, 3]

- Container 2: [10]

- Container 3: [17]

🔁 Brute Force:

Try placing each toy in every container.

Time Complexity: O(2^n)

🧠 Greedy Intuition:

Sort the weights.

Start from smallest.

Put as many toys as possible within 4 units of that one.

Move to the next unplaced toy.

🚀 Optimal Greedy Solution

Time Complexity: O(n log n)

Space Complexity: O(1)

import java.util.*;

public class PriyankaAndToys {

 public static int toys(int[] weights) {

 Arrays.sort(weights);

 int containers = 0;

 int i = 0;

 int n = weights.length;

 while (i < n) {

 int limit = weights[i] + 4; // Current container range

 containers++;

 // Skip all toys within range

 while (i < n && weights[i] <= limit) {

 i++;

 }

 }

 return containers;

 }

}

✅ Output

Input: [1, 2, 3, 21, 22, 23, 24, 25]

Output: 2

Explanation:

- Container 1: [1, 2, 3]

- Container 2: [21–25]

✅ Greedy Algorithms – Beautiful Pairs

📌 Problem Statement:

You are given two arrays A and B of the same length. A beautiful pair is an element that exists in both
arrays (can be matched once).

However, you are allowed to change one element in B to any integer.

📥 Example:

Input:

A = [1, 2, 3, 4]

B = [1, 2, 3, 3]

Output: 4

Explanation:

- Initial pairs: [1, 2, 3] → 3 matches

- Modify B[3] = 4 → Add 4th match

🔁 Brute Force:

Try all modifications in B and count matches.

Time Complexity: O(n²)

🧠 Greedy Intuition:

Count frequency of each element in both arrays.

Find initial matches using min(A[i], B[i])

Then:

Goal: Maximize the number of beautiful pairs after this one change.

If total matches < A.length → We can increase by 1

If total matches == A.length → One change will break a match → decrease by 1

🚀 Optimal Greedy Solution

Time Complexity: O(n)

Space Complexity: O(n)

import java.util.*;

public class BeautifulPairs {

 public static int beautifulPairs(int[] A, int[] B) {

 Map<Integer, Integer> freqA = new HashMap<>();

 Map<Integer, Integer> freqB = new HashMap<>();

 for (int a : A) freqA.put(a, freqA.getOrDefault(a, 0) + 1);

 for (int b : B) freqB.put(b, freqB.getOrDefault(b, 0) + 1);

 int matches = 0;

 for (int key : freqA.keySet()) {

 if (freqB.containsKey(key)) {

 matches += Math.min(freqA.get(key), freqB.get(key));

 }

 }

 // We are allowed to change 1 element in B

 if (matches == A.length) return matches - 1;

 else return matches + 1;

 }

}

✅ Output

Input:

A = [1, 1, 2, 2]

B = [1, 2, 2, 3]

Output: 4

Explanation:

- Initial matches: 3

- Change 3 → 1 → Now 4 matches

✅ Greedy Algorithms – Maximum Perimeter Triangle

📌 Problem Statement:

Given an array of stick lengths, choose 3 of them to form a triangle with maximum perimeter.
If more than one triangle has the same perimeter, pick the one with the longest maximum side.
If no triangle is possible, return -1 .

📥 Example:

Input:

sticks = [1, 1, 1, 3, 3]

Output:

[1, 3, 3]

Explanation:

- Possible triangles: (1, 1, 1), (1, 3, 3)

- Max perimeter = 7 from (1, 3, 3)

🔁 Brute Force:

Try all combinations of 3 sticks.

Check if triangle is valid.

Track max perimeter.

Time Complexity: O(n³)

🧠 Greedy Intuition:

Sort array in descending order.

Try consecutive triplets:

Since sorted, if a < b + c , then triangle is valid.

First such triplet = largest possible perimeter.

🚀 Optimal Greedy Solution

Time Complexity: O(n log n)

Space Complexity: O(1)

import java.util.*;

public class MaxPerimeterTriangle {

 public static List<Integer> maximumPerimeterTriangle(int[] sticks) {

Triangle Rule: The sum of any two sides must be greater than the third.

 Arrays.sort(sticks);

 int n = sticks.length;

 for (int i = n - 1; i >= 2; i--) {

 int a = sticks[i - 2];

 int b = sticks[i - 1];

 int c = sticks[i];

 if (a + b > c) {

 return Arrays.asList(a, b, c);

 }

 }

 return Arrays.asList(-1);

 }

}

✅ Output

Input: [1, 2, 3, 4, 5, 10]

Output: [3, 4, 5]

Input: [1, 1, 1, 2, 3, 5]

Output: [1, 1, 1]

✅ Greedy Algorithms – Largest Permutation

📌 Problem Statement:

You are given an array arr of size n and a number k .
You can swap any two elements at most k times.

Your goal is to make the largest lexicographical permutation possible in at most k swaps.

📥 Example:

Input:

arr = [4, 2, 3, 5, 1]

k = 1

Output:

[5, 2, 3, 4, 1]

Explanation:

- Only one swap allowed.

- Swap 4 and 5 to get largest possible.

🔁 Brute Force:

Try all combinations of up to k swaps.

Compute and compare all permutations.

Time Complexity: O(n! * k)

🧠 Greedy Intuition:

To get the largest permutation:

Put the largest number at position 0.

Then second largest at position 1, and so on…

For each position i :

If current element is not the correct (largest possible):

Find its correct position and swap.

Decrease k by 1

Stop if k == 0

🚀 Optimal Greedy Solution

Time Complexity: O(n)

Space Complexity: O(n)

import java.util.*;

public class LargestPermutation {

 public static int[] largestPermutation(int k, int[] arr) {

 int n = arr.length;

 // Map each number to its index for O(1) lookup

 Map<Integer, Integer> pos = new HashMap<>();

 for (int i = 0; i < n; i++) {

 pos.put(arr[i], i);

 }

 for (int i = 0; i < n && k > 0; i++) {

 int expected = n - i;

 if (arr[i] != expected) {

 int indexToSwap = pos.get(expected);

 // Swap in array

 pos.put(arr[i], indexToSwap);

 pos.put(expected, i);

 int temp = arr[i];

 arr[i] = arr[indexToSwap];

 arr[indexToSwap] = temp;

 k--;

 }

 }

 return arr;

 }

}

✅ Output

Input:

arr = [4, 2, 3, 5, 1], k = 1

Output: [5, 2, 3, 4, 1]

Input:

arr = [2, 1, 3], k = 1

Output: [3, 1, 2]

