
Unit-3

🏢 Permissioned Blockchain: Enterprise Context

Unlike public blockchains (like Bitcoin), permissioned blockchains restrict access to verified
participants. They're ideal for enterprises needing privacy, identity management, and fine-grained
control over data sharing.

✅ Key Features

Known identities: All participants are authenticated.

Governance: Rules are enforced via policies.

Efficiency: Lower overhead than public chains (no mining).

Examples: Hyperledger Fabric, R3 Corda, Quorum.

🧠 Use Cases

Supply chain transparency with privacy

Interbank settlements

Trade finance with selective data visibility

Consortium-based governance (e.g., healthcare, logistics)

⚙ Design Issues in Permissioned Blockchains

1. Identity Management – How are participants verified (e.g., certificates)?

2. Access Control – Who can read, write, or audit data?

3. Privacy – Do you use private channels or data partitions?

4. Consensus Mechanism – Must fit private networks (no PoW).

5. Performance & Scalability – Balance trust and throughput.

6. Interoperability – Can different blockchain systems work together?

🧾 Executing Smart Contracts

Logic is coded into chaincode (Fabric) or contract flows (Corda).

Smart contracts define rules for asset transfer, compliance, or event triggers.

Permissioned chains can restrict who executes contracts and under what policies.

🔁 State Machine Replication

Each node maintains a replica of the blockchain state.

The network processes transactions in the same order across nodes to ensure deterministic
results.

Fundamental to ensuring all participants agree on the latest state (consensus).



🔄 Consensus in Permissioned Environments

Used for reaching agreement without mining:

🧩 1. Paxos

Ensures consensus despite node crashes or delays.

Used in traditional distributed systems.

Relies on leader election and majority agreement.

🔁 2. RAFT

Simplified alternative to Paxos, easier to implement.

One leader node proposes blocks; followers replicate.

Used in Fabric’s ordering service with Raft-based ordering nodes.

🧱 3. Byzantine General Problem (BGP)

Models how distributed parties can reach consensus even if some act maliciously.

Solution: Byzantine Fault Tolerance (BFT).

🛡 Byzantine Fault Tolerant (BFT) Systems

Tolerate up to f < n/3 malicious nodes.

Ensures safety (correct results) and liveness (progress continues).

Common in critical enterprise systems (e.g., financial ledgers).

🧠 Lamport-Shostak-Pease Algorithm

First practical algorithm to solve BGP.

Works in synchronous networks with bounded delays.

Assumes authenticated communication and majority agreement.

🌐 BFT in Asynchronous Systems

More realistic: messages can be delayed or reordered.

Requires advanced BFT protocols like:

PBFT (Practical BFT): Used in early versions of Hyperledger.

HotStuff: Modern, modular BFT used in platforms like Diem (Facebook).

Tendermint: BFT consensus for Cosmos networks.


