
✅ Dynamic Programming

✅ Dynamic Programming – Coin Change Problem

📌 Problem Statement:

You are given an array of coins coins[] representing different denominations and an integer amount
representing a total amount of money. Return the minimum number of coins required to make up that
amount. If it’s not possible, return -1 .

📥 Example:

Input: coins = [1, 2, 5], amount = 11 Output: 3 Explanation: 5 + 5 + 1 = 11

🔁 Brute Force Approach (Recursive)

Time Complexity: Exponential — O(S^n), where S is the amount and n is the number of coins

Space Complexity: O(S) due to recursive stack

public class CoinChangeBrute {

 public static int coinChange(int[] coins, int amount) {

 if (amount == 0) return 0;

 if (amount < 0) return -1;

 int minCoins = Integer.MAX_VALUE;

 for (int coin : coins) {

 int res = coinChange(coins, amount - coin);

 if (res >= 0 && res < minCoins) {

 minCoins = res + 1;

 }

 }

 return (minCoins == Integer.MAX_VALUE) ? -1 : minCoins;

 }

}

💡 Optimal Approach (Top-Down with Memoization)

Time Complexity: O(amount * number of coins)

Space Complexity: O(amount) due to memoization array

import java.util.HashMap;

public class CoinChangeMemo {

 public static int coinChange(int[] coins, int amount) {

 return helper(coins, amount, new HashMap<>());

 }

 private static int helper(int[] coins, int amount, HashMap<Integer, Integer>

memo) {

 if (amount == 0) return 0;

 if (amount < 0) return -1;

 if (memo.containsKey(amount)) return memo.get(amount);

 int minCoins = Integer.MAX_VALUE;

 for (int coin : coins) {

 int res = helper(coins, amount - coin, memo);

 if (res >= 0 && res < minCoins) {

 minCoins = res + 1;

 }

 }

 int result = (minCoins == Integer.MAX_VALUE) ? -1 : minCoins;

 memo.put(amount, result);

 return result;

 }

}

🚀 Most Optimal Approach (Bottom-Up Dynamic Programming)

Time Complexity: O(amount × number of coins)

Space Complexity: O(amount)

import java.util.Arrays;

public class CoinChangeDP {

 public static int coinChange(int[] coins, int amount) {

 int[] dp = new int[amount + 1];

 Arrays.fill(dp, amount + 1); // use amount + 1 as infinity

 dp[0] = 0;

 for (int i = 1; i <= amount; i++) {

 for (int coin : coins) {

 if (coin <= i) {

 dp[i] = Math.min(dp[i], dp[i - coin] + 1);

 }

 }

 }

 return dp[amount] > amount ? -1 : dp[amount];

 }

}

✅ Dynamic Programming – Candies

📌 Problem Statement:

There are N children standing in a line. Each child is assigned a rating value. You are to distribute
candies to these children subject to the following conditions:

1. Each child must have at least one candy.

2. Children with a higher rating get more candies than their neighbors.

What is the minimum number of candies you must give?

📥 Example:

java

CopyEdit

Input: ratings = [1, 0, 2] Output: 5 Explanation: [2,1,2] candies => total = 5

🔁 Brute Force Approach

Time Complexity: O(N²)

Space Complexity: O(N)

This approach keeps updating the array until all constraints are satisfied.

import java.util.Arrays;

public class CandiesBrute {

 public static int minCandies(int[] ratings) {

 int n = ratings.length;

 int[] candies = new int[n];

 Arrays.fill(candies, 1);

 boolean changed = true;

 while (changed) {

 changed = false;

 for (int i = 0; i < n; i++) {

 if (i > 0 && ratings[i] > ratings[i - 1] && candies[i] <= candies[i

- 1]) {

 candies[i] = candies[i - 1] + 1;

 changed = true;

 }

 if (i < n - 1 && ratings[i] > ratings[i + 1] && candies[i] <=

candies[i + 1]) {

 candies[i] = candies[i + 1] + 1;

 changed = true;

 }

 }

 }

 int total = 0;

 for (int c : candies) total += c;

 return total;

 }

}

🚀 Optimal Approach (Two-Pass Dynamic Programming)

Time Complexity: O(N)

Space Complexity: O(N)

import java.util.Arrays;

public class CandiesDP {

 public static int minCandies(int[] ratings) {

 int n = ratings.length;

 int[] candies = new int[n];

 Arrays.fill(candies, 1);

 // Left to Right Pass

 for (int i = 1; i < n; i++) {

 if (ratings[i] > ratings[i - 1]) {

 candies[i] = candies[i - 1] + 1;

 }

 }

 // Right to Left Pass

 for (int i = n - 2; i >= 0; i--) {

 if (ratings[i] > ratings[i + 1]) {

 candies[i] = Math.max(candies[i], candies[i + 1] + 1);

 }

 }

 int total = 0;

 for (int c : candies) total += c;

 return total;

 }

}

✅ Output

java

CopyEdit

Input: [1, 0, 2]Output: 5Input: [1, 2, 2]Output: 4

✅ Dynamic Programming – Equal

📌 Problem Statement:

You have a list of integers representing the number of chocolates each colleague has. You can perform
the following operation any number of times: Choose one colleague and give 1, 2, or 5 chocolates to
every other colleague.

What is the minimum number of operations required so that everyone has the same number of
chocolates?

📥 Example:

java

CopyEdit

Input: [2, 2, 3, 7] Output: 2 Explanation: Reduce to [2,2,2,2] in 2 operations.

🔁 Brute Force Approach

Idea: Try to equalize all elements to a baseline (min, min - 1, ..., min - 4) and check which gives the
least operations.

Time Complexity: O(N * 5)

Space Complexity: O(1)

java

CopyEdit

import java.util.List;

public class EqualBrute {

 public static int equal(List<Integer> arr) {

 int min = Integer.MAX_VALUE;

 for (int a : arr) min = Math.min(min, a);

 int res = Integer.MAX_VALUE;

 for (int base = 0; base <= 4; base++) {

 int operations = 0;

 for (int a : arr) {

 int diff = a - (min - base);

 operations += diff / 5 + (diff % 5) / 2 + (diff % 5) % 2;

 }

 res = Math.min(res, operations);

 }

 return res;

 }

}

🚀 Most Optimal Approach (Math + Greedy)

Time Complexity: O(N)

Space Complexity: O(1)

This is the same approach as brute force above but focuses only on trying min, min-1, ..., min-4
which guarantees optimal.

import java.util.List;

public class EqualOptimal {

 public static int equal(List<Integer> arr) {

 int min = Integer.MAX_VALUE;

 for (int a : arr) {

 min = Math.min(min, a);

 }

 int minOps = Integer.MAX_VALUE;

 for (int base = 0; base <= 4; base++) {

 int ops = 0;

 for (int a : arr) {

 int diff = a - (min - base);

 ops += diff / 5;

 diff %= 5;

 ops += diff / 2;

 diff %= 2;

 ops += diff;

 }

 minOps = Math.min(minOps, ops);

 }

 return minOps;

 }

}

✅ Output

java

CopyEdit

Input: [2, 2, 3, 7]Output: 2Input: [10, 7, 12]Output: 3

✅ Dynamic Programming – Kingdom Division

📌 Problem Statement:

A kingdom has n cities connected by n-1 roads such that there's one path between any two cities (i.e.,
it's a tree). The king wants to divide the kingdom among two sons, such that:

1. Every city belongs to exactly one of the two kingdoms.

2. No two adjacent cities belong to the same kingdom.

3. Each kingdom must have at least one city.

Count the number of ways to divide the kingdom modulo 109+710^9 + 7109+7.

📥 Example:

java

CopyEdit

Input: n = 3, edges = [[1, 2], [1, 3]]Output: 2

🧠 Intuition:

We use DP on Trees. For each node, we define:

dp[u][0] : Ways to divide subtree rooted at u where u and its parent are not in the same group.

dp[u][1] : Ways to divide subtree rooted at u where u and its parent are in the same group.

🚀 Optimal Solution (DFS + DP on Tree)

Time Complexity: O(N)

Space Complexity: O(N)

import java.util.*;

public class KingdomDivision {

 static final int MOD = 1_000_000_007;

 static long[][] dp;

 static List<List<Integer>> tree;

 public static int kingdomDivision(int n, int[][] edges) {

 dp = new long[n + 1][2];

 tree = new ArrayList<>();

 for (int i = 0; i <= n; i++) tree.add(new ArrayList<>());

 for (int[] edge : edges) {

 int u = edge[0], v = edge[1];

 tree.get(u).add(v);

 tree.get(v).add(u);

 }

 dfs(1, 0);

 return (int) dp[1][0];

 }

 private static void dfs(int u, int parent) {

 dp[u][0] = 1; // diff group from parent

 dp[u][1] = 1; // same group as parent

 for (int v : tree.get(u)) {

 if (v == parent) continue;

 dfs(v, u);

 long same = dp[v][1];

 long diff = dp[v][0];

 dp[u][1] = dp[u][1] * (same + diff) % MOD;

 dp[u][0] = dp[u][0] * diff % MOD;

 }

 }

}

✅ Output

java

CopyEdit

Input: n = 3, edges = [[1,2],[1,3]]Output: 2

✅ Dynamic Programming – Common Child

📌 Problem Statement:

Given two strings, find the length of their longest common subsequence (LCS). This LCS represents
the "common child".

📥 Example:

java

CopyEdit

Input: s1 = "HARRY", s2 = "SALLY" Output: 2 Explanation: The common child is "AY"

🔁 Brute Force (Not practical for long strings)

Try all subsequences of both strings and compare.

Time Complexity: O(2^n * 2^m)

Not feasible for strings > 10 characters.

🚀 Optimal Solution (DP Table)

Use 2D DP table dp[i][j] = LCS length of first i chars of s1 and first j chars of s2 .

Time Complexity: O(n * m)

Space Complexity: O(n * m)

public class CommonChild {

 public static int commonChild(String s1, String s2) {

 int n = s1.length(), m = s2.length();

 int[][] dp = new int[n + 1][m + 1];

 for (int i = 1; i <= n; i++) {

 for (int j = 1; j <= m; j++) {

 if (s1.charAt(i - 1) == s2.charAt(j - 1)) {

 dp[i][j] = 1 + dp[i - 1][j - 1];

 } else {

 dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);

 }

 }

 }

 return dp[n][m];

 }

}

✅ Output

java

CopyEdit

Input: "ABCD", "ABDC"Output: 3Input: "HARRY", "SALLY"Output: 2

✅ Dynamic Programming – Down to Zero II

📌 Problem Statement:

You are given an integer n . You can perform the following operations:

1. Replace n with any factor f such that f < n and n % f == 0 .

2. Subtract 1 from n .

The goal is to reduce n to 0 using minimum steps.

📥 Example:

java

CopyEdit

Input: 10 Output: 4 Explanation: 10 → 5 → 4 → 2 → 0

🧠 Intuition:

At each state n , we can:

Decrease n by 1.

Or jump to any factor f such that f < n .

We use BFS to find the minimum steps.

🚀 Optimal Solution (BFS)

Time Complexity: O(n√n)

Space Complexity: O(n)

import java.util.*;

public class DownToZero {

 public static int downToZero(int n) {

 Queue<Integer> queue = new LinkedList<>();

 boolean[] visited = new boolean[n + 1];

 int[] dist = new int[n + 1];

 queue.offer(n);

 visited[n] = true;

 dist[n] = 0;

 while (!queue.isEmpty()) {

 int current = queue.poll();

 if (current == 0) return dist[0];

 // Option 1: subtract 1

 if (!visited[current - 1]) {

 queue.offer(current - 1);

 visited[current - 1] = true;

 dist[current - 1] = dist[current] + 1;

 }

 // Option 2: replace with a factor

 for (int i = 2; i * i <= current; i++) {

 if (current % i == 0) {

 int f1 = i;

 int f2 = current / i;

 if (f1 < current && !visited[f1]) {

 queue.offer(f1);

 visited[f1] = true;

 dist[f1] = dist[current] + 1;

 }

 if (f2 < current && !visited[f2]) {

 queue.offer(f2);

 visited[f2] = true;

 dist[f2] = dist[current] + 1;

 }

 }

 }

 }

 return -1; // Should never reach

 }

}

✅ Output

java

CopyEdit

Input: 10Output: 4Input: 1Output: 1Input: 3Output: 3

